Reconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials

نویسندگان

  • Jun Kawahara
  • Peter Andersson Ersman
  • Xin Wang
  • Göran Gustafsson
  • Hjalmar Granberg
  • Magnus Berggren
چکیده

Low voltage operated electrochemical devices, such as electrochromic displays, electrochemical transistors and electrolyte capacitors can be produced from electrically conducting polymers and polyelectrolytes. Here, we report how such polymers and polyelectrolytes can be casted together with nanofibrillated cellulose (NFC) derived from wood. The resulting films, which carry ionic or electronic functionalities, are all-organic, disposable, light-weight, flexible, self-adhesive, elastic and self-supporting. The mechanical and self-adhesive properties of the films enable us to achieve simple and flexible electronic systems by assembling the films into various kinds of components using a “cut and stick” method. Additionally, the self-adhesive surfaces provide us with a new concept that not only allows for simplified system integration of printed electronic components, but also allows for a unique possibility to detach and reconfigure one or several subcomponents by a “peel and stick” method to create yet another device configuration. This is demonstrated by a stack of two films that first served as the electrolyte layer and the pixel electrode of an electrochromic

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions.

Biological composites are typically based on an adhesive matrix that interlocks rigid reinforcing elements in fiber composite or brick-and-mortar assemblies. In nature, the adhesive matrix is often made up of proteins, which are also interesting model systems, as they are unique among polymers in that we know how to engineer their structures with atomic detail and to select protein elements for...

متن کامل

Flexible and Cellulose-based Organic Electronics

Organic electronics is the study of organic materials with electronic functionality and the applications of such materials. In the 1970s, the discovery that polymers can be made electrically conductive led to an explosion within this field which has continued to grow year by year. One of the attractive features of organic electronic materials is their inherent mechanical flexibility, which has ...

متن کامل

Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μ...

متن کامل

An Organic Mixed Ion–Electron Conductor for Power Electronics

A mixed ionic-electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio-phene):-poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1...

متن کامل

Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the amount of nanocellulose in hyd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013